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Linear and planar arrays of coupled oscillators have been proposed
as means of achieving high power rf sources through coherent
spatial power combining. [ 1 ][2] In such applications, a uniform
phase distribution over the aperture is desired. However, it has
been shown that by dctuning some of the oscillators away from the
oscillation frequency of the ensemble of oscillators, one may
achieve other useful aperture phase distributions. (3] Notable
among these are linear phase distributions resulting in steering of
the output rf beam away from the broadside direction. The thecory
describing the operation of such arrays of coupled oscillators is
quite complicated since the phenomena involved arc inhercntly
nonlinear. This has made it difficult to develop an intuitive
understanding of the impact of oscillator tuning on phase control
and has thus impeded practical application. |11 this work a
simplified theory is developed which faciliiatcs intuitive
understanding by establishing an analog of the phase control
problem in terms of electrostatics.

We begin by reviewing the nonlinear equations describing the
behavior of an array of loosely coupled oscillators. [2] ‘I'he behavior
of the phase of a single oscillator injection locked to an input
signal,

j(me Vig) __ jOW
1'nj(’7 - Ainje

Vinj = A

can be described by the following differential equation.
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where 0:-wt -t ¢, ¢ is the phase of the oscillator oscillating at
frequency, @, and



the locking bandwidth which is inversely proportional to the Q of
the oscillator and A, the amplitude of the oscillation. Now, for an
array of N coupled oscillators, the injection signals arc just the
outputs of the other oscillators and the phase of the i* oscillator is
described by a differential equation of the form,
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and g,je"q"’ iIs the coupling between oscillators 1 and j. limiting the

coupling to nearest neighbors and taking the continuum limit as
the number of oscillators increcases to infinity and the spacing
decreases to zero (i becomes a continuous variable, x), results in,
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where Aw, is the mutual locking bandwidth of the coupled

oscillators and < > is the average of the oscillator tuning
frequencies, co(x). In steady state with small phase diffcrcnccs
bctwcen neighboring oscillators, onc has,
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which is Poisson’s equation of electrostatics! Similarly for a two
dimensional array onc obtains a two dimensional Poisson
equation. From this point, all of the familiar results of
electrostatics apply if one merely identifies the oscillator tuning
with charge density and the phase distribution with electrostatic
potential.

For example, suppose that wc detune the oscillators at each end of
a linear array in opposite direction with respect to the average
tuning frequency with the intention of steering the beam as
described by lLiao and York. [3] This can bc represented as two
delta function charge densities of opposite sign onc at each end of
the aperture. The solution for the phase distribution is merely a




linear function as shown in Figure 1. yiclding the desired steering
of the beam. This linear solution may, of course, be recognized as
the potential in a parallel plate capacitor. For comparison, the
dots in Figure 1 represent the solution of the full nonlinear
equations with no approximation.

Note that if the two delta functions have the same sign, the average
of the tuning frequencies is changed resulting in a constant charge
distribution in addition to the deltas. This constant term yiclds a
guadratic soiu tion for the phase distribution as shown in Figure 2,
Of course, various ratios of delta function amplitudes vyield
corresponding combinations of linear and quadratic solutions such
as the one indicated in Figure 3. Similar results obtain for two
dimensional arrays wherein, for example, various detunings of the
oscillators on the perimeter of the array yield phase distributions
which are solutions of the two dimensional Poisson equation with
delta functions and constants as sources. Such a phase
distribution is illustrated in Figurc 4. This resulted from dctuning
of all the perimeter oscillators by the same amount.

Finally, it is noted that this simplified theory makes clear the fact
that any desired slowly varying phase distribution can be realized
if one is willing to detunc all of the oscillators. The appropriate
tuning can be ascertain cd by substituting the desired phase
distribution into Poisson’s equation and determining the resulting
charge distribution.
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Figure 1. Equal and
opposite detuning of the end
oscillators.

Figure 2. Equal detuning of
the end oscillators.

Figure 3. Unequal detuning
of end oscillator-s.

Figute 4. Equal detuning of
perimeter oscillators.
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